A Posteriori Estimation of Dimension Reduction Errors

نویسندگان

  • Sergey Repin
  • Stefan Sauter
  • Anton Smolianski
چکیده

A new a posteriori error estimator is presented for the verification of the dimensionally reduced models stemming from the elliptic problems on thin domains. The original problem is considered in a general setting, without any specific assumptions on the domain geometry, coefficients and the right-hand sides. The estimator provides a guaranteed upper bound for the modelling error in the energy norm, exhibits the optimal convergence rate as the domain thickness tends to zero and accurately indicates the local error distribution. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-21819 Accepted Version Originally published at: Repin, S; Sauter, S; Smolianski, A (2004). A posteriori estimation of dimension reduction errors. In: Feistauer, M. Numerical mathematics and advanced applications. Berlin: Springer, 716-725. A Posteriori Estimation of Dimension Reduction Errors Sergey Repin, Stefan Sauter and Anton Smolianski 1 V.A. Steklov Institute of Mathematics, Fontanka 27, 191 011 St. Petersburg, Russia [email protected] 2 Institute of Mathematics, Zurich University, CH-8057, Zurich, Switzerland stas, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Quantitative control of idealized analysis models of thin designs

When preparing a design model for engineering analysis, model idealization is often used, where defeaturing, and/or local dimension reduction of thin regions, are carried out. This simplifies the analysis, but quantitative estimates of the idealization error, the analysis error caused by this idealization, are necessary if the results are to be of practical use. The paper focuses on a posterior...

متن کامل

A Posteriori Estimation of Dimension Reduction Errors for Elliptic Problems on Thin Domains

A new a posteriori error estimator is presented for the verification of the dimensionally reduced models stemming from the elliptic problems on thin domains. The original problem is considered in a general setting, without any specific assumptions on the domain geometry, coefficients, and the right-hand sides. For the energy norm of the error of the zero-order dimension reduction method, the pr...

متن کامل

Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations

In this paper we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and ef...

متن کامل

Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

In this chapter we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and effective Greedy and POD-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017